Synaptic inputs to trigeminal primary afferent neurons cause firing and modulate intrinsic oscillatory activity.
نویسندگان
چکیده
In this paper, we investigated the influence of synapses on the cell bodies of trigeminal muscle spindle afferents that lie in the trigeminal mesencephalic nucleus (NVmes), using intracellular recordings in brain stem slices of young rats. Three types of synaptic responses could be evoked by electrical stimulation of the adjacent supratrigeminal, motor, and main sensory nuclei and the intertrigeminal area: monophasic depolarizing postsynaptic potentials (PSPs), biphasic PSPs, and all or none action potentials without underlying excitatory PSPs (EPSPs). Many PSPs and spikes were abolished by bath-application of 6,7-dinitroquinoxaline (DNQX) alone or combined with D,L-2-amino-5-phosphonovaleric acid (APV), suggesting that they are mediated by non-N-methyl-D-aspartate (NMDA) and NMDA glutamatergic receptors, while some action potentials were sensitive to bicuculline, indicating involvement of GABAA receptors. A number of cells showed spontaneous membrane potential oscillations, and stimulation of synaptic inputs increased the amplitude of the oscillations for several cycles, which often triggered repetitive firing. Furthermore, the oscillatory rhythm was reset by the stimulation. Our results show that synaptic inputs to muscle primary afferent neurons in NVmes from neighboring areas are mainly excitatory and that they cause firing. In addition, the inputs synchronize intrinsic oscillations, which may lead to sustained, synchronous firing in a subpopulation of afferents. This may be of importance during rapid biting and during the mastication of very hard or tough foods.
منابع مشابه
Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input
Radiate and planar neurons are the two major types of multipolar neurons in the ventral cochlear nucleus (VCN). Both cell types receive monosynaptic excitatory synaptic inputs from the auditory nerve, but have different responses to sound and project to different target regions and cells. Although the intrinsic physiology and synaptic inputs to planar neurons have been previously characterized,...
متن کاملPersistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade.
Many types of neurons fire spontaneously because of the activity of pacemaking ion channels. Although endogenous firing can serve as a persistent signal to downstream targets, little attention has been paid to factors that might modulate such intrinsic electrical activity. We tested for modulation of spontaneous firing of Purkinje neurons in cerebellar slices under conditions in which principal...
متن کاملConsistency and Diversity of Spike Dynamics in the Neurons of Bed Nucleus of Stria Terminalis of the Rat: A Dynamic Clamp Study
Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biop...
متن کاملThe firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat
Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the midbrain neural basis underlying each phase of behavior in formalin test has not been clarified. The present study was designed to investigate the nucleus cuneiformis (CnF) neuronal responses during two phases after subcutaneous injection of formalin into the hind paw...
متن کاملRole of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 92 4 شماره
صفحات -
تاریخ انتشار 2004